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SURVEILLANCE PROBLEMS: POISSON MODELS WITH NOISE

I. Richard Savagea
/

University of Minnesota

0. Introduction.

The model discussed in (2]-1 / is generalized by the introduction of noise.

The generalization increases the domain of application as well as making the

associated problem statistical (Bayes) rather than purely probabilistic as

Vformerly.

A process, the production process, is either producing a continuous

Ul stream of goods or else is in a state of repair. A cycle consists of all of

the events from the time that the production process leaves the repair state

until it has gone through production and repair and is once again ready to

leave the repair state. The variable, t, is used to measure time from the be-

ginning of a cycle. It takes m time units to go through repair at a cost of

I K units per unit of time. When the production process is producing and is in

state x, the income from production per unit of time is i(x). When the pro-

duction process leaves the repair state, it is in the 0 state, i.e., x(O)'O.

It is assumed that x(t) is a Poisson stochastic process with parameter Ax. In

particular, when x(t) changes, it is a unit increase, the number of changes per

unit of time is Poisson distributed with parameter AXx, and the times between

changes have independent exponential distributions with expectation 1/A

a/ Work supported in part by the Office of Naval Research.

l/ The present paper is self contained as far as results. It is necessary

to read [2] to obtain additional motivation as well as details for some

of the proofs.
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I. Observations are made on a process y(t)=x(t)+z(t), where z(t) is a Poisson

process with parameter A z . The x- and z- processes are assumed independent.

Hence y(t) is a Poisson process with parameter A =A x +A + . (It will be useful

to define H=l/, =(A +z)- 1 .) Thus we cannot observe the production process

directly. The noise, z(t), contaminates the observations. For example, if

i . y(t) is an instrument reading used to make inferences about x(t), then z(t)

can be thought of as the accumulated calibration error. It is assumed z(O)=O

and hence y(O)=O, e.g., repairs include recalibration.

jj In Section 1, it is assume that y(t) is observed continuously. In

Section 2, it is assumed that each observation of y(t) costs L units; ob-

iservation results are obtained instantly and an observation must be obtained
exactly at the time that repairs begin. The primary purpose of the analysis

is to obtain methods for finding qualitative properties of the optimal solutions.

Ii The methods used are sufficiently general to allow minor variations in the

model without requiring an entire redevelopment. For instance, dropping the

-- restriction of looking at the production process immediately before beginning

repairs would not involve difficult changes. The full strength of the

assumption that the x- and z- processes are Poisson might not be required,

but the weakening of this assumption certainly can not be made as completely

as it was done when just dealing with y(t)=x(t) [2, Section 3]. Specific

Ii choices of the income function i(x), computation procedures, and numerical

examples are not discussed. It is hoped that the general qualitative

properties obtained for the solutions will help sufficiently in a particular

problem so that detailed numerical analysis will not be necessary.

1. Continuous Surveillance.

A cycle will consist of T units of production time where T is determined

by the rule used for placing the production process in the repair state.
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T will be a random variable and can depend on the data obtained up to the

time when production is stopped, i.e., T can depend on y(.) for 0 9 t 9 T.

Since the cycles all begin in the same state, the choice of the rule should

be the same for each cycle. If R is a specific rule, let T(R) be the

associated random time. Then the long run average income per unit of time,

1(R), is T(R)

Ef i(x(t))dt]-mK

0(R) ET(R) + m

The basic problems are to isolate the reasonable rules, to evaluate I(R)

for those rules, and to find properties of the best rule among the reasonable

rules. When y(t)=x(t), it was found that the reasonable rules were to select

an integer w and to stop production as soon as x(t) exceeded w, i.e., T(w) was

the smallest solution of x(t)=w+l. In this section, it is shown, even when

y(t) contains noise, that the reasonable rules involve the selection of an

integer w and T(w) is the smallest solution of y(t)=w+l. When w=-l, the

production process will always be kept in repair. When w=w, the production

J process is never repaired. Thus for decision purposes the history of how

T y(.) arrived at w+l is not relevant. In other words, in making inferences

about x(.) at time t from observing y(.) up to time t, y(t) is a sufficient

statistic. The basic result is contained in:

Theorem 1.

P(x(T)=kly(.), 0 i t 9 T) = P(x(T)=kly(T)).

Let p=A x/(L x+6z) = Ax/A=HAx, and y(T)=n. Then the following is well

known.

Theorem 2.

P(x(T)=kly(T)=n) =nk
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I (Using Theorems 1 and 2, one can say that x(.) for t > T is a Poisson

~jI process with a random starting point selected from a binomial distribution.)

Proof of Theorem 1.

it The proof is by induction on the value of y(T). If y(T) =0, then

Ft x(T) = 0 and the result is trivial. Now let t i be the smallest solution of

y(T) = i for i=0,1,2,... .. Clearly,

P(x(T)=kly(.), 0 9 t 9 T and y(T)=i) = P(x(t )=kly(.), 0 9 t 9 ti)

F1 Now proceed with the induction argument, using the following decomposition,

P(x(t i+1)=kly(.), 0 -- t 9 il

11=P(x(t i)=k and x(t i+1)-x(t i)=Oly(.), 0 t g tip and til

+ P(x(ti)=k-1 and x(ti+)-x(ti)=lly(.), 0 g t ;g tip andt

iiNow use the independence of the increments of the x- and y- processes, i.e.,
the future does not effect the past and the past does not effect the changes

1 which will occur in the future. Then

P(Xt i1 )kly.),0 9 t ;9til

=P(x(t )=kly(.), 0 9 t 9 t i)P(x(t i 1 )-X(t i)=Olt i and t 1 1 )

I+ P(x(t )=k-lly(.), 0 9 t 9 t i)P(x(t i+1 )-x(t i)=lit i and tid

Using the induction hypothesis, one obtains

1P(x(t i)=kly(t i)=i)P(x(ti+1 )-x(t i)=Olt 1 and ti1

1+ P~~ =-l~ )iP(( + -~ =i and tid

1At this point wierequire
(1.2) I-P(x(t i1l)-x(ti )=Olt and t i1 ) P(x(ti+ 1)-X(t i)=lit i and ti~1 ) = .
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INow using (1.2) and Theorem 2 in (1.1), one finds

[ P(x(T)=kly(.), 0 s t $ T and y(T)=i+l)

i k 1  i-k i - k+l i+l k i+l-k
(k)p (1-P)k(1-p) + <kil)p -I -P/ i '  ( k )p (1-p)

This completes the proof of the theorem, since the desired probability depends

on y(.), 0 9 t $ T, only through the value of y(T).

The following theorem will not be used here but is easily proved at

this point.

jj Theorem

Let y(t)=x(t)+z(t) where x(t) and z(t) are independent Weiner

processes with variance parameters C and C . Then
x z

HP(x(T)=xly(.), 0 9 t 9 T)dx = P(x(T)=xjy(T))dx

and the conditional distribution of x(T) given y(T) is normal with mean

y(T)Cx/(Cx+C z) and variance TC C /(C +Cz).

LProof.
In Theorem 1, let A =AC and Az =ACz then the variablesx x z

[x(t)-tLC - , [z(t)-t6cz- AI , and [y(t)-tA(C +C )i -C will have the

properties of the variables in the present theorem as A tends to infinity.

Now consider the evaluation of 1(w). It is clear that

ET(w) = (w+l)H

and thus the denominator of l(w) is of the form (w+l)H+m. The evaluation of

the numerator will require more detail:

T (w) T(w)

E[ T i(x(t))dt] = E[E( i(x(t))dt)Ix(T(w)) and T(w)].0, 0
Given the value of x(T(w)), the points of increase of x(.) in the interval

0 t 9 T(w) will be uniformly distributed, so that
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(w x(T(w-l))
E[J i(x(t))dt] = E T(w) z i(j)/(l+x(T(w-l)))

0 
J=O

w a
= E T(w) (w)pa(l-p)w'a[ E i(J)/(l+a)]

a=O J=O

w a=(w+I)H E (w)pa(1-plW'a, . i(j)/(l+a)]
a=O a J=O

Ii w ,wl , w a
= H E (a+ljpa ~-p a [ E i(j)]

a=O ~ J=O

Finally

w 'w+l' a'" 'w-a( a
(1.3) 1(w) = CH E (a)p a-pa E i(J))-mK]/[(w+l)H+m].

a=0 J=O

The remaining problem is to find the best choice of w. The followi-,, theorems

give bounds for 1(w).

Theorem 4.

w
1(w) 9 maximun (Ax1 Z i(j)-KI]/( 1 (w+1)+m].

w J=O x

Proof.

The quantity being maximized on the right hand side in the statement

of the theorem is 1(w) with p=l. This expression was obtained in (2] when

there was no noise. (It should be easier to evaluate than 1(w), in that it

does not involve a double summation.) The proof is made by noting: If it

were possible to obaerve directly the process x(t), then at no cost an

artificial process z(t) could be added to it. Hence, any strategy which is

available when observing x(t)+z(t) is also available when observing x(t).

Theorem 5.

maximum I(w) z maximum I(t)
w t
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I where I(t) is the income corresponding to the rule of having each cycle of

Ilength exactly t+m. Furthermore

-xt . (t)a a-l
I(t) = [Axe . -- ,-- ( E i(j))-mK]/[t+m].

a=l J=O

Proof.

Since the best fixed time strategy can not be as good as the best

strategy, one immediately obtains the main result of the theorem. The ex-

pression for I(t) is a routine computation. When i(x) is a low degree

Ipolynomial, it is not difficult to evaluate I(t).
i Below, the symbols on the left are defined by the symbols on the right:

p(a,w) = a w-a

a

c(a) = . i(j)/(a+l)
J=O
w

b(w) = E p(aw)c(a)
a=O

Notice

1(w) = [(w+l)Hb(w)-mK]/[(w+l)H+m].

I Lemma 1.

p(a,w) considered as a density function in a with parameter w is

P9lya type oo and in particular

A A
E' p(a,w) > E p(a,w+l).

a=O a=O

Ip(a,w) considered as a density function in a with parameter p is

iP9ya type - and in particular

A
EZ p(a,w)

I. a=O

is for each A and w a decreasing function of p.

h. -7-



i Proof.

See [1] for definitions and methods.

The following Lenma will help in the analysis of I(w).

Lemma 2.

If i(x) is non increasing then c(a) and b(w) are non increasing.

Ij Also, b(w), for fixed w, is a non increasing function of p.

Proof.

That c(a) is non increasing is immediate. The proof for b(w) is

based on the following
~a-1

b(w) = E (c(a-l)-c(a))[ E p(j,w)].
a=l J-0

In this expression for b(w) the coefficients of the inner summation,

c(a-l)-c(a), are non negative and the value of the inner summation is a

inon increasing function of w. Hence b(w) is a non increasing function of w.

On the other hand the inner summation is a non increasing function of p, so

that b(w) is a non increasing function of p.

2. Costly Surveillance.

A strategy in this case consists of the following: Select a time T(O)

at which the first inspection will be made; select a W (T(O)) such that ifo

i y(T(O)) is not in W (T(O)), begin repairs, but if y(T(O)) is in W (T(O))0 0

then; select a T(T(O),y(T(O))) and make the next observation at time

I T(O) + T(T(O),y(T(O))): select a WI(T(O),y(T(O)),T(T(O),y(T(O)))) such

that if the observation at this time is not in W1 , begin repairs, but if the

I. observation is in W I then; select T(T(O),y(T(O))) ........

The class of possible strategies is large. The following theorem,

however, simplifies the matter.
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II Theorem 6.

Let to,tl,...,t be an increasing sequence of numbers such 
that for

i=O,...,r, one has that ti depends on t and y(tj) for j < i (t.1 and y(t. 1)

can be arbitrary fixed numbers). Then

H P(x(tr)=kly(ti) and ti, for £=l...,r) P(x(tr)=kly(tr)).

Remark.

Ui In interpreting this theorem in terms of the above discussion, 
let

to=T(O), tl=T(O) + T(T(O),y(T(O))),.... The implication of the theorem is

that in predicting the future history of x(t) 
given this kind of past history

for y(t), the only relevant information is Y(tr), i.e., the last observation.

This implies that the class of reasonable 
strategies consists of the selection

Hof a set W and a sequence of numbers T(O), T(l),...,T(k). Then, if an

observation is not in W, begin repairs, and 
if an observation equals k which

Lis in W, wait T(k) units of time before making the next observation.
Proof of Theorem 6.

The increment in x(.) in the interval (ti-1 ,ti) is binomially

distributed with parameters p and y(ti)-Y(ti-i). 
Also the increments are

independently distributed. Hence the sum of the increments is binomially

I distributed with parameters p and y(tk). Which is the desired conelusion

and yields the following theorems.

Theorem 7.

P(x(tr)=kly(t ) and 
ti, for i=l,...,r) 

( k (I-p) r

1! Theorem 8.
Let y(t)=x(t)+z(t) where x(t) and z(t) are independent 

Weiner

processes with vari4nce parameters C and C . Then

L P(x(tr)=xly(t i) and ti, for i=l,...,r)dx = 
P(x(tr)=xly(tr))dx

-9-



jand the conditional distribution of x(tr) given y(tr) is normal with mean

Y(tr)Cx/(Cx+Cz) and variance trCxC/(C+C).

[In the statements of Theorems 7 and 8, it is implicitly assumed that

the conditions on tI of Theorem 6 are satisfied.]

Assume there exists a best strategy-and let I* be the maximum income per

unit of time. Our objective is to bound I* and to find qualitative properties

of the best strategy. (It will be left as a conjecture that there is a best

Istrategy. In fact, it will be assumed that there is a unique best strategy.)
2/If an observation has just been obtained-. and found to be y, then let

F*(y) be the expected income remaining in the cycle if the best strategy is

followed. Let T*(y) be the expected time to complete the cycle if the best

strategy is followed. Our interest will be centered on the function

F(y)=F*(y)-T*I*. An interpretation of F(y) is the maximum expected income

remaining in a cycle when the observation y is obtained and at each instant

of time the rate of income is I* less than in the original problem. It can

I be shown that F(O)=O. Also the following functional equation can be obtained:

-M(K+I*) - L, YAW

(2.1) F(y) maximum T(y)W, T(y) E[/ (i(x(t))-I*)dtly(O)-y]-., L

I0
+ E e Y (T(y)A )J(J!)-1T(y+j), y 4 W

J=O

IThe unknowns in this equation are F(y), W, T(y), and I*. Clearly

(2.2) F(y) I -m(K+I*) - L.

JSince F(O)=0, one obtains
(2.3) 1* Z -K-m-L.

2/ The cost, L, to obtain the observation is to be paid immediately after

]the observation is made.

V. -10-



Also, if i(x) is non increasing then

(2.4) F(y) < 0, y=l,2,....

To find an upper bound on I*, consider the impossible strategy of stopping

the production process at the moment y(t) leaves the optimal W and to do this

with one look. Since y(t) increases by unity, this would correspond to

stopping as soon as y(t) > w for the best choice of w. Then, the upper

bound on I* would be

(2.5) maximum [(w+l)Hb(w)-rL-L]/[(w+l)H+m].

0 9 w

A weaker upper bound could be obtained by using Theorem 4. A lower bound on

I* could be obtained by using the non optimal rule of having each cycle exactly

of length T+m and choose the best value of T. Thus, a lower bound for I*

would be

1T
(2.6) maximum [-[ i(xt)dt] - L -ni]/[T+m].1 0 T 0

In any case, I* is an increasing function of p.

I If y E W then it is desirable to continue production at least until

y(t)=y+l. If we could progress from y to y+l without paying for observations,

there would be a savings. Hence

T

(2.7) F(y) ; F(y+l) + E[( i(x(t))dt)ly(O)=y] - HI*! 0

where T is the first time point of increase in y(.) after leaving y, i.e.,

T is the smallest solution of y(t)=y+l given y(O)=y. The expected value of

the integral in (2.7) can be expressed in the following formI
-y y

H E ()pJ( 1 p)Y-Ji(j).
~J=O

-11-
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The expected value of the integral in (2.1) can be expressed in the

following forms:

I T(y)
(2.8) z[f (i(x(t))-I*)dtly(O)-y]

I 0

y c (y ) ya -A xT(y) at
-l)pC(l (AxT(Y)) (a') -

a=O a'=l

I d)=E Z T(y)(i(a+J)-*)/(a'+l)}

a'l

J=O

d~a) a (xt) a E (i~a+j)-I* /a +1
a =0 J=O

is a non increasing function in a. Hence, for a fixed value of T(y), the

I expression (2.8) is a non increasing function. This result implies:

Theorem 9.

IIf i(x) is non increasing, then F(y) is non increasing and W is

either empty or of the form (0,1,...,w).

I Proof.

If W is empty, i.e., the process is always in repair, there is nothing

to prove. If F(y) is non increasing, it is clear that W should be of the de-

1 sired form. Hence the crucial result is to show that F(y) is non increasing.

The proof is by contradiction. Assume there exists a y' such that y' and

1 y'+l are in W and F(y') < F(y'+l). Then consider the following non optimal

-12-



'I
strategy: If during a cycle y'is observed behave as if y+l had been observed,

i.e., for the rest of the cycle if y* is observed use T(y*+l) and stop pro-

L duction as soon as a y* is observed such that y*+l is in W. Now use the

moLotonicity property of (2.8) and the one to one probability mapping of

paths through y'andy'+l. This yields the desired contradiction.

Theorem 10.

If i(x) is non increasing .and y is in W, then

E(i(x)ly) - ()pJ(l-p)YJi(J) a 1*.

If I* is replaced by a lower bound, say I*, then the largeat value of y

satisfying E(i(x)ly) a I* is an upper bound for w, defined in Theorem 9.

Theorem 11.

If i(x) is non increasing then T(y) is non increasing.

Proof.

The proof is similar to that of Proposition 3.14 of [2]. Define

g(y,t) as the expected income (reduced by 1* per unit of time) remaining in

Lthe cycle when the best strategy is followed, the process is now at y, and
t units of time remain until the next observation. ( g(y,t) is defined only

11 for y in W.) The main part of the proof is to show that the functions g(y~t)

have a unique maximum in t for each y. First, it will be shown that g(w,t)

has a unique maximum. After some computations, one can obtain:

g(w,t) = -L - m(K+I*) + E p(a',t)C(a')
a'=O

where

p(a',t) = ex(Lxt)a/(a') '

C(o) = F(w)+m(I+I*)

a'-1
C(a') = E B(J), for a'=l,2,...

J-0

-13-



I!
I and

B(J) - 1 ; (Ew) a )w-a i(a+j).I*].
a-O

fil Now p(a',t) is of Plya type 3 in t, so that if the sequence C(a') has at most

one maximum, then g(w,t) has at most one maximum [1]. Because i(x) is non

II increasing, it is clear that B(J) is non increasing. Then for a' k 1,

C(a') is increasing, decreasing, or first increasing and then decreasing.

(Next, we must show

or 
c(o) < c(l)

(2.9) F(w) < A E a ) 1p io)I]mKI)
- a=O

The quantity on the right hand side corresponds to using the super optimal

strategy of stopping production as soon as a transition in the x(.) process

occurs after y(t)=w and this is done with no inspection cost. Hencet ii inequality (2.9). Hence the entire C(J) sequence has at most one maximum and

g(w,t) has at most one maximum. (If there is no maximum, either there is no

Iproduction or there is no repair.)
The remainder of the proof easily follows form

-Y ( p _Py-a , , _* + A y(2.10) g'(y,t) = e [F(y+l)-F(y) + E (y)pa(laP)Y-a(i(a)'*) +/f AZ y

a~0 0

where y < w and g' is the derivative with respect to t.

Theorem 10 can be improved, to yield:

T(y)

(2.11) E[f (i(x(t))-I*)dtjy(O)=y] 1 0.

0

It can be shown that T(y) is less than the unique root of this inequality and

if I* is replaced by a lower bound, then the root will be increased. The
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bounds from (2.11) will be decreasing in y. ( i(x) is assumed non increasing.)

A lower bound can be found corresponding to Proposition (3.16) of [2].
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Appendix: Questions

L1. When does I(w), see equation (1.3), have a unique maximizing value when

considered as a function of w?

2. When does the expression in Theorem 4 have a unique maximizing value when

(1 considered as a function of w?

3. When are the best choices of w in equation (1.3) and in Theorem 9 decreasing

functions of p for fixed H?

4. When is T(y) a decreasing function of p?

V

1.
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